Safety Quick-Guide

For Arc Welding and Cutting the Safe Way!

Be sure this guide reaches the operator.
Thank you for using Miller or Hobart arc welding and cutting equipment.

We ask you to work like a pro — and pros weld and cut safely. Please read and comply with the sample safety procedures outlined in this guide and the equipment Owner’s Manual.

Always read and follow the Owner’s Manual, the safety labels on the product, and all applicable safety standards, especially ANSI Z49.1, *Safety in Welding, Cutting, and Allied Processes* (we recommend you get a copy and keep it handy). A list of the safety standards and where to get them is located in Section 9 of this guide.

Only qualified persons should install, operate, maintain, and repair this equipment. A qualified person is defined as one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated ability to solve or resolve problems relating to the subject matter, the work, or the project and has received safety training to recognize and avoid the hazards involved.

Thank you for working safely.

CONTENTS

1. General Safe Practices 2
2. Arc Welding Hazards 3
3. Engine Hazards 5
4. Plasma Arc Cutting Hazards 7
5. Trailer Safety 9
6. Special Situations & Equipment 12
7. EMF Information 13
8. California Proposition 65 Warnings 14
9. Principal Safety Standards 15
10. Lens Shade Selector Guide 16
11. Weld Cable Selector Guide 17
1. General Safe Practices

Become trained and read the instructions before working on the machine or welding or cutting. Read and understand the Safety Data Sheets (SDSs) and the manufacturer’s instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes, and metals.

Wear approved safety glasses with side shields under your welding helmet or face shield and at all times in the work area.

Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.

Wear a safety harness if working above floor level.

Keep children away from all equipment and processes.

Do not install or place machine on or over combustible surfaces.

Use GFCI protection when operating auxiliary equipment in damp or wet locations.

Use only genuine replacement parts from the manufacturer.

Perform installation, maintenance, and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.
2. Arc Welding Hazards

Electric shock from welding electrode or wiring can kill.

Wear dry, hole-free insulating gloves and body protection. Do not touch electrode with bare hand. Do not wear wet or damaged gloves. Do not touch live electrical parts. Do not use AC weld output in damp, wet, or confined spaces, or if there is a danger of falling. Use AC output ONLY if required for the welding process. If AC output is required, use remote output control if present on unit. Do not use worn, damaged, undersized, or repaired cables. Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when in cramped positions such as sitting, kneeling, or lying; or when there is a high risk of unavoidable or accidental contact with the workpiece or ground. For these conditions, use the following equipment in order presented: 1) a semiautomatic DC constant voltage (wire) welder, 2) a DC manual (stick) welder, or 3) an AC welder with reduced open-circuit voltage.

Protect yourself from electric shock by insulating yourself from work and ground. Use non-flammable, dry insulating material if possible, or use dry rubber mats, dry wood or plywood, or other dry insulating material big enough to cover your full area of contact with the work or ground, and watch for fire.

Disconnect input plug or power before working on machine. Do not make input connections if color blind. Frequently inspect input power cord and ground conductor for damage or bare wiring – replace immediately if damaged – bare wiring can kill. Keep cords dry, free of oil and grease, and protected from hot metal and sparks. Be sure input ground wire is properly connected to a ground terminal in disconnect box or receptacle. Properly install, ground, and operate all equipment according to its Owner’s Manual and national, state, and local codes.
Breathing welding fumes can be hazardous to your health.

Keep your head out of the fumes. Do not breathe the fumes. Use enough ventilation, exhaust at the arc, or both, to keep fumes and gases from your breathing zone and the general area. The recommended way to determine adequate ventilation is to sample for the composition and quantity of fumes and gases to which personnel are exposed.

Read and understand the Safety Data Sheets (SDSs) and the manufacturer’s instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes, and metals.

Use enough forced ventilation or local exhaust (forced suction) at the arc to remove the fumes from your breathing area.

Use a ventilating fan to remove fumes from the breathing zone and welding area.

If adequacy of ventilation or exhaust is uncertain, have your exposure measured and compared to the Threshold Limit Values (TLV) in the Safety Data Sheet (SDS).

Welding can cause fire or explosion.

Do not weld near flammable material or where the atmosphere can contain flammable dust, gas, or liquid vapors (such as gasoline). Move flammables at least 35 feet (11 meters) away or protect them with flame-proof covers (see NFPA 51B listed in Section 9).

Welding sparks can cause fires. Have a fire extinguisher nearby, and have a trained fire watcher ready to use it. After completion of work, inspect area to ensure it is free of sparks, glowing embers, and flames.

Do not weld on containers that have held combustibles, or on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 and AWS A6.0 (see Safety Standards in Section 9).
Arc rays can burn eyes and skin.

Use welding helmet with correct shade of filter (see Section 10 to choose the correct shade).

Wear welders cap and safety glasses with side shields. Use ear protection when welding out of position or in confined spaces. Button shirt collar.

Wear body protection made from durable, flame-resistant material (leather, heavy cotton, wool). Body protection includes oil-free clothing such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.

3. Engine Hazards

Fuel can cause fire or explosion.

Engine fuel plus flames or sparks can cause fire or explosion.

Do not weld near engine fuel.

Do not spill fuel. If fuel is spilled, clean it up and do not start engine until fumes are gone.

Do not smoke while fueling or if near fuel or fumes.

Stop engine before fueling.

Do not fuel a hot engine. Stop engine and let it cool off before checking or adding fuel.
Generator exhaust contains carbon monoxide. This is a poison you cannot see or smell.
NEVER use inside a home or garage, EVEN IF doors and windows are open.
Only use OUTSIDE and far away from windows, doors, and vents.

Using a generator indoors CAN KILL YOU IN MINUTES.

Moving parts can injure.
Keep hands, hair, loose clothing, and tools away from moving parts such as fans, belts, and rotors. Keep all doors, panels, and guards closed and secured.

Battery explosion can injure.
Sparks can cause battery gases to explode.
Do not smoke and keep matches and flames away from battery.
Wear a face shield or safety glasses when working near or on a battery.

Battery acid can burn skin and eyes.
Do not spill acid.
Wear rubber gloves and a face shield or safety glasses when working on a battery.

Steam and hot coolant can burn.
Check coolant level when engine is cold to avoid scalding.
If the engine is warm and checking is needed, wear safety glasses and gloves and put a rag over radiator cap. Turn cap slightly and let pressure escape slowly before completely removing cap.

Exhaust sparks can cause fire.
Use approved engine exhaust spark arrestor in required areas — see applicable codes.
Keep exhaust and exhaust pipes away from flammables.
Do not locate unit near flammables.
4. Plasma Arc Cutting Hazards

Cutting sparks can cause fire or explosion.

Do not cut near flammable material or where the atmosphere can contain flammable dust, gas, or liquid vapors (such as gasoline). Move flammables at least 35 feet (11 meters) away or protect them with flame-proof covers (see NFPA 51B listed in Section 9).

Cutting sparks can cause fires. Have a fire extinguisher nearby, and have a trained fire watch ready to use it. After completion of work, inspect area to ensure it is free of sparks, glowing embers, and flames.

Do not cut on containers that have held combustibles, or on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 and AWS A6.0 (see Safety Standards in Section 9).

Plasma arc can injure.

Turn off power before disassembling torch.

Do not grip material near cutting path.
Do not touch hot parts bare-handed.
Disconnect input plug or power before working on machine.
Do not make input connections if color blind.
Frequently inspect input power cord and ground conductor for damage or bare wiring – replace immediately if damaged – bare wiring can kill. Keep cords dry, free of oil and grease, and protected from hot metal and sparks. Be sure input ground wire is properly connected to a ground terminal in disconnect box or receptacle.
Properly install, ground, and operate this equipment according to its Owner’s Manual and national, state, and local codes.

Electric shock from torch or wiring can kill.

Wear dry insulating gloves. Do not wear wet or damaged gloves.
Do not touch live electrical parts.
Do not use worn, damaged, undersized, or repaired cables.

Protect yourself from electric shock by insulating yourself from work and ground. Use non-flammable, dry insulating material if possible, or use dry rubber mats, dry wood or plywood, or other dry insulating material big enough to cover your full area of contact with the work or ground, and watch for fire.

Breathing cutting fumes can be hazardous to your health.

Keep your head out of the fumes. Do not breathe the fumes. Use enough ventilation, exhaust at the arc, or both, to keep fumes and gases from your breathing zone and the general area. The recommended way to determine adequate ventilation is to sample for the composition and quantity of fumes and gases to which personnel are exposed.
Read and understand the Safety Data Sheets (SDSs) and the manufacturer's instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes, and metals.

Use enough forced ventilation or local exhaust (forced suction) at the arc to remove the fumes from your breathing area.

Use a ventilating fan to remove fumes from the breathing zone and cutting area.
If adequacy of ventilation or exhaust is uncertain, have your exposure measured and compared to the Threshold Limit Values (TLV) in the Safety Data Sheet (SDS).
Arc rays can burn eyes and skin.

Use welding helmet or face shield with correct shade of filter (see Section 10 to choose the correct shade).

Wear welders cap and safety glasses with side shields. Use ear protection when cutting out of position or in confined spaces. Button shirt collar.

Wear body protection made from durable, flame-resistant material (leather, heavy cotton, wool). Body protection includes oil-free clothing such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.

5. Trailer Safety

Overloading can injure, and damage equipment.

Know the capacity of the trailer. Do not overload the trailer. Select a proper towing vehicle. Be sure load is properly secured. Load includes welder/generator, cables, tools, and approved accessories.

Rating Plate

GVWR – Gross Vehicle Weight Rating (Maximum Total Trailer Weight Including Its Load) GAWR – Gross Axle Weight Rating VIN NO – Vehicle Identification Number
Incorrect tongue weight can cause fishtailing and loss of control of towing vehicle resulting in injury and equipment damage.

Install generator according to Owner’s Manual with engine end toward hitch end of trailer.

Ground generator frame to trailer frame — see Owner’s Manual.

Distribute weight so that trailer tongue weight is approximately 10% of the gross trailer weight (GTW).

Do not let tongue weight exceed coupler and hitch rating.

<table>
<thead>
<tr>
<th>Trailer And Coupler Class¹</th>
<th>Gross Vehicle Weight Rating GVWR lb (kg)</th>
<th>Gross Trailer Weight GTW² lb (kg)</th>
<th>Maximum Tongue Weight³ lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up to 2000 (Up to 910)</td>
<td>1000 (455)</td>
<td>100 (45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 (910)</td>
<td>200 (90)</td>
</tr>
<tr>
<td>2</td>
<td>2000 to 3500 (910 to 1590)</td>
<td>2000 (910)</td>
<td>200 (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3500 (1590)</td>
<td>350 (158)</td>
</tr>
<tr>
<td>3</td>
<td>3500 to 5000 (1590 to 2270)</td>
<td>3500 (1590)</td>
<td>350 (158)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000 (2268)</td>
<td>500 (227)</td>
</tr>
</tbody>
</table>

¹ Information From SAE J684 May 2014
² Gross Trailer Weight (Actual Loaded Weight)
³ 10% Of GTW Recommended

Incorrect size or rating of hitch can cause trailer to break loose from towing vehicle.

Always use safety chains when towing.

Cross safety chains under coupling to prevent tongue from dropping to ground.

Allow only enough slack for tight turns.

Make sure hitch and ball are properly sized, match each other, and are fully engaged.

On optional ball couplers, always insert hitch safety pin before towing.
Chock wheels when trailer is uncoupled from vehicle.

1. Chock in direction of grade.
2. Position chock snugly behind tire.
3. Place chock square to the tire.
4. Tap chock into place.
5. For added protection, chock both sides of tire.

Lights that are not working can cause accidents.

Be sure vehicle and trailer light connectors match and are securely pushed together.
Check all lights for proper operation before using the trailer.
Check condition of wiring harness leads, plugs, bulbs, and connections regularly. Repair or replace damaged bulbs, parts, or wires.

Unexpected tilting of trailer can injure, and damage equipment.

When trailer is uncoupled from towing vehicle, use jack on front and blocks under rear to prevent tilting.
Use proper blocks that are large enough and able to support the necessary weight.
Always chock the wheels when uncoupled.

Loose or incorrect hardware and fasteners can injure, and damage equipment.

Periodically double-check all nuts and bolts for tightness and condition.
If necessary, always replace any fastener with one of equal size, grade, and type.
Be sure the grade marks on replacement fastener match the original bolt. The manufacturer's identification mark is not critical and does not matter for the replacement fastener.
6. Special Situations & Equipment

Confined spaces can be hazardous.

Confined spaces are areas which lack room for full movement and often lack ventilation, such as storage tanks, vats, tunnels, boilers, pipes, hold of a ship, corners of a room, near a ceiling or floor corner, or in a pit. Gases can collect and form dangerous concentrations.

Always open all covers, remove any hazardous or toxic materials, provide forced ventilation, and provide a means to turn off power and gas from the inside.

Never work alone — have constant communication with someone outside who can quickly turn off power and gas, is trained in rescue procedures, and is able to pull you out in case of emergency.

Do not use AC weld output in confined spaces.

Insulate yourself from work and ground using non-flammable, dry insulating material if possible, or use dry rubber mats, dry wood or plywood, or other dry insulating material big enough to cover your full area of contact with the work or ground, and watch for fire.

Always check and monitor the air quality in the space. Welding or cutting fumes and gases can displace air and lower the oxygen level — use ventilation and, if needed, an air-supplied respirator. Be sure the breathing air is safe. The recommended way to determine adequate ventilation is to sample for the composition and quantity of fumes and gases to which personnel are exposed.

Always remember: All normal arc welding and cutting hazards are amplified in confined spaces (see ANSI Z49.1 listed in Section 9).

Cylinders can explode if damaged.

Compressed gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process and can be part of the cutting process, be sure to treat them carefully.

Protect compressed gas cylinders from excessive heat, mechanical shocks, slag, open flames, sparks, and arcs.

Install cylinders in an upright position by securing them to a stationary support or cylinder rack to prevent falling or tipping.

Keep protective cap in place over valve except when cylinder is in use or connected for use. Turn face away from valve outlet when opening cylinder valve. Do not stand in front of or behind the regulator when opening the valve.

Cylinders can be heavy — use lifting device and proper methods to prevent back injury.

Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards (see Section 9).

Electric and magnetic fields (EMF) can affect Implanted Medical Devices.

Wearers of Pacemakers and other Implanted Medical Devices should keep away.

Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.
Hot parts can burn.

Do not touch hot welded or cut parts with bare hand. If handling is needed, use proper tools and/or wear heavy, insulated welding gloves to prevent burns. Allow cooling period before handling parts or working on equipment.

Falling equipment can injure, and damage equipment.

Use lifting eye to lift unit only, NOT running gear, gas cylinders, trailer, or any other accessories. Use correct procedures and equipment of adequate capacity to lift and support unit. If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit. Do not place unit where it can easily tip over or fall.

Battery charging output and battery explosion can injure.

Sparks can cause battery gases to explode. Do not smoke and keep matches and flames away from battery. Wear a face shield or safety glasses when working near or on a battery. Do not use welder or plasma cutter to charge batteries or jump start vehicles unless the unit has a battery charging feature designed for this purpose.

7. EMF Information

Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). The current from arc welding (and allied processes including spot welding, gouging, plasma arc cutting, and induction heating operations) creates an EMF field around the welding circuit. EMF fields can interfere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, restrict access for passers-by or conduct individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

1. Keep cables close together by twisting or taping them, or using a cable cover.
2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld whilst carrying the welding power source or wire feeder.

About Implanted Medical Devices:

Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.
8. California Proposition 65 Warnings

⚠️ WARNING: This product can expose you to chemicals including lead, which are known to the state of California to cause cancer and birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov.

⚠️ WARNING: Cancer and Reproductive Harm – www.P65Warnings.ca.gov

For Diesel Engines:

⚠️ WARNING: Breathing diesel engine exhaust exposes you to chemicals known to the state of California to cause cancer and birth defects or other reproductive harm.
- Always start and operate the engine in a well-ventilated area.
- If in an enclosed area, vent the exhaust to the outside.
- Do not modify or tamper with the exhaust system.
- Do not idle the engine except as necessary.

For more information, go to www.P65Warnings.ca.gov/diesel.

Notes
9. Principal Safety Standards

Booklet, TLVs, Threshold Limit Values..., from American Conference of Governmental Industrial Hygienists (ACGIH), 1330 Kemper Meadow Drive, Cincinnati, OH 45240 (phone: 513–742–2020, website: www.acgih.org).

10. Lens Shade Selector Guide

<table>
<thead>
<tr>
<th>Operation/Process</th>
<th>Electrode Size in. (mm)</th>
<th>Arc Current (Amperes)</th>
<th>Minimum Protective Shade</th>
<th>Suggested* Shade No. (Comfort)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shields metal arc welding (SMAW)</td>
<td>Less than 3/32 (2.5)</td>
<td>Less than 60</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>3/32–5/32 (2.5–4)</td>
<td>60–160</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5/32–1/4 (4–6.4)</td>
<td>160–250</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>More than 1/4 (6.4)</td>
<td>250–550</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Gas metal arc welding (GMAW) and flux cored arc welding (FCAW)</td>
<td>Less than 60</td>
<td>7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>60–160</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160–250</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250–550</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas tungsten arc welding (GTAW)</td>
<td>Less than 50</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>50–150</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150–500</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air carbon arc cutting (CAC–A)</td>
<td>(Light)</td>
<td>Less than 500</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>(Heavy)</td>
<td>500–1000</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Plasma arc welding (PAW)</td>
<td>Less than 20</td>
<td>6</td>
<td>6 to 8</td>
<td></td>
</tr>
<tr>
<td>20–100</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–400</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400–800</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma arc cutting (PAC)</td>
<td>Less than 20</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>20–40</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40–60</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–80</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80–300</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300–400</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400–800</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torch brazing (TB)</td>
<td>—</td>
<td>—</td>
<td>3 or 4</td>
<td></td>
</tr>
<tr>
<td>Torch soldering (TS)</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Carbon arc welding (CAW)</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plate thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
</tr>
<tr>
<td>Oxyfuel gas welding (OFW)</td>
</tr>
<tr>
<td>Light</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Heavy</td>
</tr>
<tr>
<td>Oxygen Cutting (OC)</td>
</tr>
<tr>
<td>Light</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Heavy</td>
</tr>
</tbody>
</table>

* As a rule of thumb, start with a shade that is too dark to see the weld or cut zone. Then go to a lighter shade which gives sufficient view of the weld or cut zone without going below the minimum. In oxyfuel gas welding, cutting, or brazing where the torch produces a high yellow light, it is desirable to use a filter lens that absorbs the yellow or sodium line in the visible light of the (spectrum) operation.

Guide adapted from ANSI Z49.1, 2012.
Low Current Plasma arc cutting data (0–80 Amperes) supplied by Miller Electric Mfg. LLC.
11. **Weld Cable Selector Guide**

* Turn Off power before connecting to weld output terminals.

* Do not use worn, damaged, undersized, or repaired cables.

NOTICE – The Total Cable Length in Weld Circuit (see table below) is the combined length of both weld cables. For example, if the power source is 100 ft (30 m) from the workpiece, the total cable length in the weld circuit is 200 ft (2 cables x 100 ft). Use the 200 ft (60 m) column to determine cable size.

<table>
<thead>
<tr>
<th>Welding Amperes</th>
<th>Weld Cable Size** And Total Cable (Copper) Length In Weld Circuit Not Exceeding***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 ft (30 m) Or Less</td>
</tr>
<tr>
<td></td>
<td>10 – 60% Duty Cycle</td>
</tr>
<tr>
<td></td>
<td>AWG (mm²)</td>
</tr>
<tr>
<td>100</td>
<td>4 (20)</td>
</tr>
<tr>
<td>150</td>
<td>3 (30)</td>
</tr>
<tr>
<td>200</td>
<td>3 (30)</td>
</tr>
<tr>
<td>250</td>
<td>2 (35)</td>
</tr>
<tr>
<td>300</td>
<td>1 (50)</td>
</tr>
<tr>
<td>350</td>
<td>1/0 (60)</td>
</tr>
<tr>
<td>400</td>
<td>1/0 (60)</td>
</tr>
<tr>
<td>500</td>
<td>2/0 (70)</td>
</tr>
<tr>
<td>600</td>
<td>3/0 (95)</td>
</tr>
<tr>
<td>700</td>
<td>4/0 (120)</td>
</tr>
<tr>
<td>800</td>
<td>4/0 (120)</td>
</tr>
<tr>
<td>900</td>
<td>2x2/0 (2x70)</td>
</tr>
<tr>
<td>1000</td>
<td>2x2/0 (2x70)</td>
</tr>
<tr>
<td>1250</td>
<td>2x3/0 (2x95)</td>
</tr>
</tbody>
</table>

* This chart is a general guideline and may not suit all applications. If cable overheating occurs (normally you can smell it), use next size larger cable.

** Weld cable size (AWG) is based on either a 4 volts or less drop or a current density of at least 300 circular mils per ampere. () = mm² for metric use

*** For distances longer than those shown in this guide, see AWS Fact Sheet No. 39, Welding Cables, available from the American Welding Society at http://www.aws.org.