MATERIAL SAFETY DATA SHEET

For U.S. Manufactured or Distributed Welding Consumables and Related Products. May be used to comply with OSHA's Hazard Communication Standard, 29 CFR 1910.1200 and Superfund Amendments and Reauthorization Act (SARA) of 1986 Public Law 99-499. Standard must be consulted for specific requirements.

SECTION 1 - IDENTIFICATION

Manufacturer/Supplier Name: HOBART BROTHERS COMPANY
Address: 101 TRADE SQUARE EAST, TROY, OH 45373
Website: www.hobartbrothers.com
Product Type: SHELDED METAL ARC WELDING (SMAW) ELECTRODES

GROUP A: Product For: CARBON STEEL
AWS Classification: E6010, E6011, E6012, E6013, E6022, E7014, E7024-1

GROUP B: Product For: LOW HYDROGEN CARBON STEEL
AWS Classification: E7016, E7018, E7018-1, E7018-M

GROUP C: Product For: LOW HYDROGEN, LOW ALLOY STEEL

GROUP D: Product For: HIGH STRENGTH CELLULOSE CARBON STEEL
AWS Classification: E7010-P1, E8010-P1, E9010-G, E9010-P1

SECTION 2 - HAZARDOUS INGREDIENTS

IMPORTANT - This section covers the hazardous materials from which this product is manufactured. The fumes and gases produced during welding with normal use of this product are also addressed in Section 5. The term "hazardous" in this section should be interpreted as a term required and defined in OSHA Hazard Communication Standard (29 CFR Part 1910.1200).

<table>
<thead>
<tr>
<th>HAZARDOUS INGREDIENTS</th>
<th>GROUP - % WEIGHT A</th>
<th>% B</th>
<th>% C</th>
<th>% D</th>
<th>CAS NO.</th>
<th>EXPOSURE LIMIT (mg/m³)</th>
<th>OSHA PEL</th>
<th>ACGIH TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRON+</td>
<td>70-90</td>
<td>60-80</td>
<td>60-90</td>
<td>70-90</td>
<td>7439-89-6</td>
<td>5 R*, 10 (Oxide Fume)</td>
<td>5 R*(Fe₂O₃) (A4)</td>
<td></td>
</tr>
<tr>
<td>MANGANESE#</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>7439-96-5</td>
<td>5 CL ** (Fume)</td>
<td>0.2 I* (A4) A</td>
<td></td>
</tr>
<tr>
<td>ALUMINUM OXIDE#</td>
<td><5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1344-28-1</td>
<td>5 R*</td>
<td>0.02 R* (A4, A)</td>
<td></td>
</tr>
<tr>
<td>CALCIUM CARBONATE</td>
<td>---</td>
<td>3-12</td>
<td>5-10</td>
<td>5-10</td>
<td>1317-65-3</td>
<td>5 R*, 5 (as CaO)</td>
<td>3 R*, 2 (as CaO)</td>
<td></td>
</tr>
<tr>
<td>CELLULOSE</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>9004-34-6</td>
<td>5 R*</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SILICA+</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>14808-60-7</td>
<td>1 R*</td>
<td>0.025 R* (A2)</td>
<td></td>
</tr>
<tr>
<td>(Amorphous Silica Fume)</td>
<td>---</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>60012-64-2</td>
<td>0.8</td>
<td>3 R*</td>
<td></td>
</tr>
<tr>
<td>TITANIUM DIOXIDE</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td>13463-67-7</td>
<td>15 (Dust)</td>
<td>10 (A4)</td>
<td></td>
</tr>
<tr>
<td>FLUORSPAR</td>
<td>---</td>
<td>1-12</td>
<td>4-15</td>
<td>---</td>
<td>7789-75-5</td>
<td>2.5 (as F)</td>
<td>2.5 (as F) (A4)</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM#</td>
<td>---</td>
<td>---</td>
<td><9(1)</td>
<td>---</td>
<td>7440-47-3</td>
<td>1 (Metal)</td>
<td>0.5 (Metal) (A4)</td>
<td></td>
</tr>
<tr>
<td>NICKEL#</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td><2(1)</td>
<td>7440-02-0</td>
<td>1 (Metal)</td>
<td>1.5 I* (Elemental) (A5)</td>
<td></td>
</tr>
<tr>
<td>MOYLBENUM</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td><2(1)</td>
<td>7439-98-7</td>
<td>5 R*</td>
<td>10 I*; 3 R* (Elemental and Soluble)</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM CARBONATE</td>
<td><2</td>
<td><5</td>
<td><1</td>
<td><1</td>
<td>546-93-0</td>
<td>5 R*</td>
<td>3 R*</td>
<td></td>
</tr>
<tr>
<td>STRONTIUM CARBONATE+</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>---</td>
<td>1633-05-2</td>
<td>5 R*</td>
<td>3 R*</td>
<td></td>
</tr>
<tr>
<td>SILICATE BINDERS+++</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>---</td>
<td>0.1 R* (As SiO₂ - Crystalline)</td>
<td>0.025 R* (As SiO₂ - Crystalline) (A2)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Group C - Not present in E7018-A1; E8018-C1 and C2; and E10018-D2. (2) Group C - Not present in E8018-B2, B2L; E9018-B3; B3L; and E10018-D2. R* - Respirable Fraction I* - Inhalable Fraction ** - Ceiling Limit *** - Short Term Exposure Limit + - As a nuisance particulate covered under "Particulates Not Otherwise Regulated" by OSHA or "Particulates Not Otherwise Classified" per ACGIH + - Crystalline silica is bound within the product as it exists in the package. However, research indicates silica is present in welding fume in the amorphous (noncrystalline) form + + - Slicate binders are bound within the product as it exists in the package. Research indicates any welding fume created is in the amorphous (noncrystalline) form + + + - Reportable material under Section 313 of SARA # - Reportable material under Section 313 of SARA in fibrous form ### - Reportable material under Section 313 of SARA as dust or fume (A1) - Confirmed Human Carcinogen per ACGIH (A2) - Suspected Human Carcinogen per ACGIH (A3) - Confirmed Animal Carcinogen with Unknown Relevance to Humans per ACGIH (A4) - Not Classifiable as a Human Carcinogen per ACGIH (A5) - Not Suspected as a Human Carcinogen per ACGIH Δ - Listed under ACGIH Notice of Intended Changes for Mn in 2009 ΔΔ - Limit of 0.02 mg/m³ is proposed for Respirable Mn in 2010 by ACGIH ΔΔΔ - NIOSH Recommended Exposure Limit (REL) TWA and STEL

The exposure limit for welding fume has been established at 5 mg/m³ with OSHA's PEL. The individual complex compounds within the fume may have lower exposure limits than the general welding fume PEL. An Industrial Hygienist, the OSHA Permissible Exposure Limits for Air Contaminants (29 CFR 1910.1000), and the ACGIH Threshold Limit Values should be consulted to determine the specific fume constituents present and their respective exposure limits.

SECTION 3 - PHYSICAL/Chemical CHARACTERISTICS

Welding consumables applicable to this sheet are solid and nonvolatile as shipped.

SECTION 4 - FIRE AND EXPLOSION HAZARD DATA

Welding consumables applicable to this sheet as shipped are nonreactive, nonflammable, nonexplosive and essentially nonhazardous until welded. Welding arcs and sparks can ignite combustibles and flammable products. See American National Standard Z49.1 referenced in Section 7.

SECTION 5 - REACTIVITY DATA - HAZARDOUS DECOMPOSITION/INDUSTRIAL HYGIENE INFORMATION

Welding fumes and gases cannot be classified simply. The composition and quantity of both are dependent upon the metal being welded, the process, procedures and electrodes used. Most fume ingredients are present as complex oxides and compounds and not as pure metals.
Monitor for the materials identified in Section 2. Fumes from the use of this product may contain fluorides, manganese, calcium oxide, chromium and nickel compounds, titanium dioxide, silica, mica and amorphous silica fume whose exposure limits are lower than the 5 mg/m³ PEL for general welding fume. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc. One recommended way to determine the composition and quantity of fumes and gases to which workers are exposed is to take an air sample with a personal sampler or with a sampler helmet. See ANSI/AWS F1.1, available from the "American Welding Society", P.O. Box 351040, Miami, FL 33135. Also, from AWS F1.3 "Evaluating Contaminants in the Welding Environment - A Sampling Strategy Guide", which gives additional advice on sampling.

SECTION 6 - HEALTH HAZARD DATA

EFFECTS OF OVEREXPOSURE:
Electric arc welding may create one or more of the following health hazards:
- ARC RAYS can injure eyes and burn skin.
- ELECTRIC SHOCK can kill. See Section 7.
- FUMES AND GASES can be dangerous to your health.

PRIMARY ROUTES OF ENTRY are the respiratory system, eyes and/or skin.

SHORT-TERM (ACUTE) OVEREXPOSURE EFFECTS:
- Welding Fumes - May result in discomfort such as dizziness, nausea or dryness or irritation of nose, throat or eyes. Iron, Iron Oxide - None are known. Treat as nuisance dust or fume. Manganese - Metal fume fever characterized by chills, fever, upset stomach, vomiting, irritation of the throat and achiness of body. Recovery is generally complete within 48 hours of the overexposure. Aluminum Oxide - Irritation of the respiratory system. Calcium Oxide - Dust or fumes may cause irritation of the respiratory system, skin and eyes. Silica (Amorphous) - Dust and fumes may cause irritation of the respiratory system, skin and eyes. Titanium Dioxide - Irritation of respiratory system. Fluorides - Fluoride compounds evolved may cause skin and eye burns, pulmonary edema and bronchitis. Chromium - Inhalation of fume with chromium (VI) compounds can cause irritation of the respiratory tract, lung damage and asthma-like symptoms. Swallowing chromium (VI) salts can cause severe injury or death. Dust on skin can form ulcers. Eyes may be burned by chromium (VI) compounds. Allergic reactions may occur in some people. Nickel, Nickel Compounds - Metallic taste, nausea, tightness in chest, metal fume fever, allergic reaction. Molybdenum - Irritation of the eyes, nose and throat. Magnesium, Magnesium Oxide - Overexposure to the oxide may cause metal fume fever characterized by metallic taste, tightness of chest and fever. Symptoms may last to 48 hours following overexposure. Siliicate Binders (Silica (Amorphous)) - Dust and fumes may cause irritation of the respiratory system.

LONG-TERM (CHRONIC) OVEREXPOSURE EFFECTS:
- Welding Fumes - Excess levels may cause bronchial asthma, lung fibrosis, pneumoconiosis or “siderosis.” Iron, Iron Oxide Fumes - Can cause siderosis (deposits of iron in lungs) which some researchers believe may affect pulmonary function. Lungs will clear in time when exposure to iron and its compounds ceases. Iron and magnetite (Fe₃O₄) are not regarded as fibrogenic materials. Manganese - Long-term overexposure to manganese compounds may affect the central nervous system. Symptoms may be similar to Parkinson's disease and can include slowing, changes in handwriting, gait impairment, muscle spasms and cramps and less commonly, tremor and behavioral changes. Employees who are overexposed to manganese compounds should be seen by a physician for early detection of neurologic problems. Overexposure to manganese and manganese compounds above safe exposure limits can cause irreversible damage to the central nervous system, including the brain, symptoms of which may include slurred speech, lethargy, tremor, muscular weakness, psychological disturbances and spastic gait. Aluminum Oxide - Pulmonary fibrosis and emphysema. Calcium Oxide - Prolonged overexposure may cause ulceration of the skin and perforation of the nasal septum, dermatitis and pneumonia. Mica - Prolonged overexposure may cause scarring of the lungs and pneumoconiosis characterized by cough, shortness of breath, weakness and weight loss. Silica (Amorphous) - Research indicates that silica is present in welding fume in the amorphous form. Long term overexposure may cause pneumoconiosis. Noncrystalline forms of silica (amorphous silica) are considered to have little fibrotic potential. Titanium Dioxide - Pulmonary irritation and slight fibrosis. Fluorides - Serious bone erosion (Osteoporosis) and motting of teeth. Chromium - Ulceration and perforation of nasal septum. Respiratory irritation may occur with symptoms resembling asthma. Studies have shown that chromate production workers exposed to hexavalent chromium compounds have an excess of lung cancers. Chromium (VI) compounds are more readily absorbed through the skin than chromium (III) compounds. Good practice requires the reduction of employee exposure to chromium (III) and (VI) compounds. Nickel, Nickel Compounds - Lung fibrosis or pneumoconiosis. Studies of nickel refinery workers indicated a higher incidence of lung and nasal cancers. Molybdenum - Prolonged overexposure may result in loss of appetite, weight loss, loss of muscle coordination, difficulty in breathing and anemia. Magnesium, Magnesium Oxide - No adverse long term health effects have been reported in the literature. Siliicate Binders (Silica (Amorphous)) - Research indicates that silica is present in welding fume in the amorphous form. Long term overexposure may cause pneumoconiosis. Noncrystalline forms of silica (amorphous silica) are considered to have little fibrotic potential.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:
Persons with pre-existing impaired lung functions (asthma-like conditions). Persons with a pacemaker should not go near welding and cutting operations until they have consulted their doctor and obtained information from the manufacturer of the device. Respirators are to be worn only after being medically cleared by your company-designated physician.

EMERGENCY AND FIRST AID PROCEDURES:
- Call for medical aid. Employ first aid techniques recommended by the American Red Cross. Eyes & Skin: If irritation or flash burns develop after overexposure, consult a physician.
- CARCINOGENICITY: Chromium VI compounds, nickel compounds and silica (crystalline quartz) are classified as IARC Group 1 and NTP Group K carcinogens. Titanium dioxide compounds are classified as IARC Group 2B carcinogens. Chromium VI compounds, nickel compounds, silica (crystalline quartz) and welding fumes must be considered as carcinogens under OSHA (29 CFR 1910.1200).

CALIFORNIA PROPOSITION 65:
For Group B, C, and D products: WARNING: This product contains or produces a chemical known to the State of California to cause cancer and birth defects (or other reproductive harm). (California Health & Safety Code Section 25249.5 et seq.) For Group A products: WARNING: This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)

SECTION 7 - PRECAUTIONS FOR SAFE HANDLING & USE/APPLICABLE CONTROL MEASURES

Read and understand the manufacturer's instructions and the precautionary label on the product. See American National Standard Z49.1; Safety in Welding and Cutting published by the American Welding Society, P.O. Box 351040, Miami, FL 33135 and OSHA Publication 2206 (29 CFR 1910). U.S. Government Printing Office, Washington, DC 20042 for more detail on any of the following.

VENTILATION: Use enough ventilation, local exhaust at the arc or both to keep the fumes and gases below PEL/TLVs in the worker's breathing zone and the general area. Train the welder to keep his head out of the fumes.

RESPIRATORY PROTECTION:
- Use NIOSH approved or equivalent fume respirator or air supplied respirator when welding in confined space or where local exhaust or ventilation does not keep exposure below PELs/TLVs.
- Eye PROTECTION: Wear helmet or use face shield with filter lens. As a rule of thumb begin with Shade Number 14. Adjust if needed by selecting the next lighter and/or darker shade number. Provide protective screens and flash goggles, if necessary, to shield others.
- PROTECTIVE CLOTHING: Wear hand, head and body protection which help to prevent injury from radiation, sparks and electrical shock. See ANSI Z49.1. At a minimum this includes welder's gloves and protective face shield, and may include arm protectors, aprons, hats, shoulder protection as well as dark nonsynthetic clothing. Train the welder not to touch live electrical parts and to insulate himself from work and ground.

PROCEDURE FOR CLEANUP OF SPILLS OR LEAKS: Not applicable

WASTE DISPOSAL: Prevent waste from contaminating surrounding environment. Discard any product, residue, disposable container or liner in an environmentally acceptable manner, in full compliance with Federal, State and Local regulations.

SPECIAL PRECAUTIONS (IMPORTANT): May emit some exposure below PEL/TLVs. Use personal protective equipment below the PEL/TLVs. Use industrial hygiene monitoring to ensure that your use of this material does not create exposures which exceed PEL/TLVs. Always use exhaust ventilation. Refer to the following sources for important additional information: ANSI Z49.1 from the American Welding Society, P.O. Box 351040, Miami, FL 33135 and OSHA (29 CFR 1910) from the U.S. Department of Labor, Washington, DC 20210.

Hobart Brothers Company believes this data to be accurate and to reflect qualified expert opinion regarding current research. However, Hobart Brothers Company cannot make any expressed or implied warranty as to this information.